GLAVNI MOČ

Možgani so del centralnega živčnega sistema, ki ga sestavljajo organi znotraj lobanje in obdani z zaščitnimi membranami, možganskimi ovojnicami, med katerimi je tekočina, ki jo absorbirajo poškodbe; cerebrospinalna tekočina kroži tudi skozi prekate možganov. Človeški možgani tehtajo približno 1300 g. Ta struktura po svoji velikosti in kompleksnosti nima enakega živalskega sveta.

Možgani so najpomembnejši organ živčnega sistema: v možganski skorji, ki tvori zunanjo površino možganov, v tanki plasti sive snovi, ki jo sestavljajo stotine milijonov nevronov, postanejo zaznavanja občutki, ustvarja se vsa prostovoljna dejavnost in višji duševni procesi, kot so razmišljanje, spomin in govor

Možgani imajo zelo kompleksno strukturo, vključuje milijone nevronov, katerih celična telesa so združena v več odsekov in sestavljajo tako imenovano sivo snov, medtem ko drugi vsebujejo samo živčne filamente, prekrite z mielinskimi ovojnicami in sestavljajo belo snov. Možgane sestavljajo simetrične polovice, možganske poloble, ločene z dolgim ​​utorom debeline 3–4 mm, katerega zunanja površina ustreza plasti sive snovi; možganska skorja je sestavljena iz različnih plasti nevronskih teles.

Človeški možgani so sestavljeni iz:

  • možganska skorja, najbolj obsežen in pomemben organ, saj nadzoruje zavestno in večino nezavednih dejavnosti telesa, poleg tega je to kraj, kjer se odvijajo duševni procesi, kot so spomin, razmišljanje itd.;
  • možgansko deblo je sestavljeno iz ponsa in medula, v možganskem deblu so centri, ki uravnavajo vitalne funkcije, predvsem možgansko deblo je sestavljeno iz jeder živčnih celic, zato je sivo;
  • mali možgani sodelujejo pri nadzoru ravnotežja telesa in usklajujejo gibanje telesa.

MOŽNI PLASTI

ZUNAJ MOŽENJA
Površina možganov je zelo nodularna, saj je skorja sestavljena iz več gub, ki tvorijo številne krivulje. Nekateri od teh gube, najgloblji, se imenujejo utori, ki ločujejo vsako poloblo na štiri dele, imenovane lobes; imena krp so skladna z imeni lobanjskih kosti, ki so nad njimi: frontalnimi, časovnimi, parietalnimi, okcipitalnimi. Vsak delež se prepletajo z manj globokimi gubami, ki tvorijo podolgovate ukrivljenosti, imenovane gyri.

NOTRANJI SLOŽI MOŽNOSTI
Pod možgansko skorjo se na korteksu nahaja bela snov, ki jo sestavljajo aksoni nevronov, ki povezujejo različne cone v eno poloblo (združujejo niti), združujejo različne dele možganov (nitne projekcije) in med seboj povezujejo obe polobli (šivalne niti).. Niti, ki povezujeta obe polobli, tvorita debelo belo belino, imenovano corpus callosum.

STRAN MOŽNOSTI

V globljem delu možganov so tudi živčna telesa, ki tvorijo sivo snov v bazi; v tem delu možganov so talamus, nagnjeno jedro, lečasto jedro, sestavljeno iz lupine in bledo jedro, ali hipotalamus, pod katerim se nahaja hipofiza. Ta jedra so ločena tudi s plastmi bele snovi, med njimi je membrana, imenovana zunanja kapsula, ki vsebuje živčne niti, ki povezujejo možgansko skorjo s talamusom, možganskim deblom in hrbtenjačo.

MOŽNI PLOŠČI

Cerebralne membrane so tri membrane, nameščene ena na drugo, ki obdajajo možgane in hrbtenjačo, ki služijo predvsem zaščitni funkciji: dura mater, najbolj oddaljena, najmočnejša in najdebelejša, je v neposrednem stiku z notranjo površino lobanje in notranjimi stenami hrbteničnega kanala, ki obdaja hrbtenjačo; membrana arahnoida, srednja, je tanka elastična membrana, ki je podobna mreži v strukturi; in mehka membrana možganov - notranja membrana, zelo tanka in nežna, poleg možganov in hrbtenjače.

Med različnimi možganskimi membranami, kot tudi med dura mater in kostmi lobanje, obstajajo prostori z različnimi imeni in značilnostmi: pol web-prostor, ki ločuje arahnoid in mehko membrano možganov, je napolnjen s cerebrospinalno tekočino; poltrdni prostor, ki se nahaja med dura mater in arahnoidom; in epiduralni prostor, ki se nahaja med dura mater in kosti lobanje, napolnjene s krvnimi žilami - venskimi votlinami, ki se prav tako nahajajo v sektorju, kjer je dura mater razdeljena, upognjena okoli dveh rež. V notranjosti venske votline so veje arahnoidne membrane, imenovane granule, ki filtrirajo cerebrospinalno tekočino.

BRAIN VENTRICLE

V možganih so različne votline, napolnjene s cerebrospinalno tekočino in med seboj povezane s tankimi kanali in odprtinami, ki omogočajo kroženje cerebrospinalne tekočine: lateralne komore se nahajajo znotraj možganske poloble; tretji prekat se nahaja skoraj v središču možganov; četrti se nahaja med možganskim steblom in majhnim mozgom, ki je s tretjim prekatom povezan s silvijevim sulkusom, kot tudi s polkupičastim prostorom, ki se spušča po centralnem kanalu hrbtenjače - ependyme.

ČLOVEKOVO MOŽGANJE

HUMAN BRAIN, organ, ki koordinira in ureja vse vitalne funkcije telesa in nadzoruje vedenje. Vse naše misli, čustva, občutki, želje in gibi so povezani z delom možganov, in če ne deluje, gre oseba v vegetativno stanje: izgubi se sposobnost za kakršna koli dejanja, občutke ali reakcije na zunanje vplive. Ta članek se osredotoča na človeške možgane, ki so bolj kompleksni in bolj organizirani kot možgani živali. Vendar pa obstajajo pomembne podobnosti v strukturi človeških možganov in drugih sesalcev, kot tudi večina vretenčarjev.

Osrednji živčni sistem (CNS) je sestavljen iz možganov in hrbtenjače. To je povezano z različnimi deli telesa s perifernimi živci - motoričnimi in senzoričnimi. Glej tudi NERVAJSKI SISTEM.

Možgani so simetrična struktura, kot večina drugih delov telesa. Ob rojstvu je teža približno 0,3 kg, pri odraslem pa pribl. 1,5 kg. Pri zunanjem pregledu možganov pozornost pritegnejo dve veliki polobli, ki skrivata globlje formacije. Površina polobli je prekrita z utori in zvitki, ki povečujejo površino skorje (zunanji sloj možganov). Za možganom je postavljena površina, ki je bolj tanko rezana. Pod velikimi polobli je možgansko deblo, ki prehaja v hrbtenjačo. Živci zapustijo trup in hrbtenjačo, vzdolž katerih se informacije prenašajo iz notranjih in zunanjih receptorjev v možgane, v nasprotni smeri pa se signali pošljejo v mišice in žleze. 12 parov lobanjskih živcev se odmika od možganov.

V možganih se razlikuje siva snov, ki jo sestavljajo predvsem telesa živčnih celic in tvorijo skorjo, bela snov - živčna vlakna, ki tvorijo prevodne poti (trakove), ki povezujejo različne dele možganov, in tvorijo živce, ki presegajo centralni živčni sistem in gredo v različnih organov.

Možgani in hrbtenjača so zaščiteni s kostnimi primeri - lobanjo in hrbtenico. Med snovjo možganov in koščenimi stenami so tri lupine: zunanja - dura mater, notranja - mehka, in med njimi - tanek arahnoid. Prostor med membranami je napolnjen s cerebrospinalno (cerebrospinalno) tekočino, ki je po sestavi podobna krvni plazmi, ki se proizvaja v intracerebralnih votlinah (možganskih prekatih) in kroži v možganih in hrbtenjači ter ji zagotavlja hranila in druge dejavnike, potrebne za vitalno aktivnost.

Oskrbo možganov s krvjo zagotavljajo predvsem karotidne arterije; na dnu možganov so razdeljeni na velike veje, ki gredo v različne odseke. Čeprav je teža možganov le 2,5% telesne teže, nenehno, podnevi in ​​ponoči, prejme 20% krvi, ki kroži v telesu in s tem tudi kisika. Energetske zaloge možganov so zelo majhne, ​​zato je zelo odvisna od oskrbe s kisikom. Obstajajo zaščitni mehanizmi, ki lahko podpirajo možganski pretok krvi v primeru krvavitve ali poškodbe. Značilnost možganske cirkulacije je tudi prisotnost ti. krvno-možgansko pregrado. Sestavljen je iz več membran, ki omejujejo prepustnost žilnih sten in pretok mnogih spojin iz krvi v snov možganov; ta pregrada tako opravlja zaščitne funkcije. Na primer, mnoge zdravilne učinkovine ne prodrejo skozi to zdravilo.

Možganske celice

Celice CNS imenujemo nevroni; njihova funkcija je obdelava informacij. V človeških možganih od 5 do 20 milijard nevronov. Struktura možganov vključuje tudi glijalne celice, približno 10-krat več kot nevroni. Glia zapolnjuje prostor med nevroni, oblikuje podporni okvir živčnega tkiva in opravlja tudi presnovne in druge funkcije.

Nevron, tako kot vse druge celice, je obdan z polprepustno (plazemsko) membrano. Dve vrsti procesov odstopata od celičnega telesa - dendriti in aksoni. Večina nevronov ima veliko razvejanih dendritov, vendar samo en akson. Dendriti so ponavadi zelo kratki, dolžina aksona pa je od nekaj centimetrov do nekaj metrov. Telo nevrona vsebuje jedro in druge organele, enako kot v drugih celicah telesa (glej tudi CELL).

Živčni impulzi.

Prenos informacij v možganih, kot tudi v živčni sistem kot celoto, poteka s pomočjo živčnih impulzov. Razprostirajo se v smeri od celičnega telesa do terminalnega dela aksona, ki se lahko razcepi in oblikuje niz koncev v stiku z drugimi nevroni skozi ozko režo, sinapso; prenos impulzov skozi sinapso posredujejo kemične snovi - nevrotransmiterji.

Živčni impulz običajno izvira iz dendritov - tankih vejnih procesov nevrona, ki so specializirani za pridobivanje informacij od drugih nevronov in ga prenašajo v telo nevrona. Na dendritih in v manjšem številu je na tisočih sinaps na celičnem telesu; gre skozi aksonske sinapse, ki prenašajo informacije iz telesa nevrona, ga prenašajo na dendrite drugih nevronov.

Konec aksona, ki tvori presinaptični del sinapse, vsebuje majhne mehurčke z nevrotransmiterjem. Ko impulz doseže presinaptično membrano, se nevrotransmiter iz mehurčka sprosti v sinaptično razcepko. Konec aksona vsebuje samo eno vrsto nevrotransmiterja, pogosto v kombinaciji z eno ali več vrstami nevromodulatorjev (glej spodaj Nevrokemija možganov).

Nevrotransmiter, ki se sprosti iz presinaptične membrane aksona, se veže na receptorje na dendritih postsinaptičnega nevrona. Možgani uporabljajo različne nevrotransmiterje, od katerih je vsak povezan s posebnim receptorjem.

Receptorji na dendritih so povezani s kanali v polprepustni postsinaptični membrani, ki nadzoruje gibanje ionov skozi membrano. V mirovanju ima nevron električni potencial 70 milivoltov (potencial mirovanja), medtem ko je notranja stran membrane negativno nabita glede na zunanji. Čeprav obstajajo različni mediatorji, imajo vsi stimulativni ali zaviralni učinek na postsinaptični nevron. Spodbujevalni učinek se doseže s povečanjem pretoka določenih ionov, predvsem natrija in kalija, skozi membrano. Posledično se zmanjša negativni naboj notranje površine - pride do depolarizacije. Zavorni učinek nastane predvsem zaradi spremembe v pretoku kalija in klorida, zaradi česar negativni naboj notranje površine postane večji kot v mirovanju in pride do hiperpolarizacije.

Funkcija nevrona je, da integrira vse vplive, ki jih zaznavamo skozi sinapse na svojem telesu in dendritih. Ker so ti vplivi lahko ekscitatorni ali zaviralni in se ne ujemajo v času, mora nevron izračunati skupni učinek sinaptične aktivnosti kot funkcijo časa. Če ekscitacijski učinek prevladuje nad zaviralno in membranska depolarizacija presega mejno vrednost, se aktivira določen del nevronske membrane - v območju osnove aksona (aksonovega gomolja). Tu se zaradi odpiranja kanalov za natrijeve in kalijeve ione pojavlja akcijski potencial (živčni impulz).

Ta potencial se razteza še vzdolž aksona do konca s hitrostjo od 0,1 m / s do 100 m / s (večja je akson, večja je hitrost prevoda). Ko akcijski potencial doseže konec aksona, se aktivira druga vrsta ionskih kanalov, odvisno od potencialne razlike, kalcijevih kanalov. Po njihovem mnenju kalcij vstopa v akson, kar vodi v mobilizacijo veziklov z nevrotransmiterjem, ki se približa presinaptični membrani, združi z njim in sprosti nevrotransmiter v sinapso.

Mielinske in glialne celice.

Mnogi aksoni so prekriti z mielinsko ovojnico, ki jo tvorijo večkrat zvite membrane membrane celic glije. Mielin je sestavljen predvsem iz lipidov, ki dajejo značilen videz beli snovi v možganih in hrbtenjači. Zahvaljujoč mielinskemu plašču se hitrost izvajanja akcijskega potenciala vzdolž aksona povečuje, saj se lahko ioni premikajo skozi aksonsko membrano le na mestih, ki jih ne pokriva mielin - tako imenovani prestrezanje Ranvier. Med prestrezanjem potekajo impulzi vzdolž mielinskega plašča preko električnega kabla. Odprtje kanala in prehod ionov skozi njo traja nekaj časa, odprava konstantnega odpiranja kanalov in omejitev njihovega obsega na majhna membranska področja, ki jih mielin ne pokriva, pospeši prevodnost impulzov vzdolž aksona za približno 10-krat.

Le del glialnih celic sodeluje pri tvorbi mielinske ovojnice živcev (Schwannove celice) ali živčnih traktov (oligodendrociti). Veliko bolj številne glijske celice (astrociti, mikrogliociti) opravljajo druge funkcije: tvorijo podporno okostje živčnega tkiva, zagotavljajo njegove presnovne potrebe in okrevajo po poškodbah in okužbah.

KAKO DELUJE MOŽGAN

Preberite enostaven primer. Kaj se zgodi, ko na mizo vzamemo svinčnik? Svetloba, ki se odbija od svinčnika, se osredotoča na oko z lečo in je usmerjena v mrežnico, kjer se pojavi slika svinčnika; zaznavajo ga ustrezne celice, iz katerih signal preide v glavno senzorično oddajno jedro možganov, ki se nahaja v talamusu (vidnem tuberku), večinoma v tistem delu, ki se imenuje lateralno genikulno telo. Obstajajo številni nevroni, ki se odzivajo na porazdelitev svetlobe in teme. Aksoni nevronov lateralnega kolenastega telesa gredo v primarno vidno skorjo, ki se nahaja v okcipitalnem režu velikih polobel. Impulzi, ki prihajajo iz talamusa v ta del skorje, se spremenijo v kompleksno zaporedje izpustov kortikalnih nevronov, od katerih se nekateri odzovejo na mejo med svinčnikom in mizo, drugi pa na vogale v sliki svinčnika itd. Podatki o aksonih iz primarne vidne skorje vstopajo v asociativno vizualno skorjo, kjer poteka prepoznavanje vzorcev, v tem primeru svinčnik. Priznavanje v tem delu skorje temelji na predhodno pridobljenem znanju zunanjih obrisov objektov.

Načrtovanje gibanja (tj. Jemanje svinčnika) se verjetno zgodi v možganski skorji velikih polobel. V istem predelu korteksa se nahajajo motorni nevroni, ki dajejo ukaze mišicam roke in prstov. Pristop roke do svinčnika je pod nadzorom vizualnega sistema in interoreceptorjev, ki zaznavajo položaj mišic in sklepov, informacija, iz katere vstopa v osrednji živčni sistem. Ko v roki vzamemo svinčnik, nam receptorji na konicah prstov, ki zaznavajo pritisk, povejo, če prsti dobro držijo svinčnik in kakšen napor bi ga moral držati. Če želimo napisati svoje ime s svinčnikom, moramo aktivirati druge informacije, shranjene v možganih, ki zagotavljajo to bolj kompleksno gibanje, in vizualna kontrola bo pomagala povečati njeno natančnost.

V zgornjem primeru je razvidno, da izvajanje dokaj preprostega dejanja vključuje obsežne dele možganov, ki se raztezajo od skorje do podkortikalnih regij. Z bolj kompleksnim vedenjem, povezanim z govorom ali razmišljanjem, se aktivirajo drugi nevronski krogi, ki zajemajo še obsežnejša področja možganov.

GLAVNI DELI MOŽNOSTI

Možgane lahko razdelimo v tri glavne dele: prednji mož, možgansko deblo in mali možgani. V predelu možganov se izločajo možganske poloble, talamus, hipotalamus in hipofiza (ena najpomembnejših nevroendokrinih žlez). Možgansko deblo je sestavljeno iz medulla oblongata, ponsa (pons) in srednjega možganja.

Velike poloble

- največji del možganov, komponenta pri odraslih približno 70% njene teže. Običajno so poloble simetrične. Povezane so z masivnim snopom aksonov (corpus callosum), ki zagotavljajo izmenjavo informacij.

Vsaka hemisfera je sestavljena iz štirih rež: frontalnega, parietalnega, časovnega in okcipitalnega. V skorji čelnih rež se nahaja središče, ki uravnava lokomotorno aktivnost, verjetno pa tudi centre za načrtovanje in predvidevanje. V skorji parietalnih rež, ki se nahajajo za frontalnim, obstajajo območja telesnih občutkov, vključno z občutkom dotika in občutkom sklepov in mišic. Vstran do parietalnega režnja se navezuje na časovno, v katerem se nahaja primarna slušna skorja, pa tudi na središča govora in druge višje funkcije. Zadnji del možganov zaseda okcipitalni reženj, ki se nahaja nad majhnim mozgom; njegovo lubje vsebuje območja vizualnih občutkov.

Območja skorje, ki niso neposredno povezana z regulacijo gibov ali analizo senzoričnih informacij, se imenujejo asociativni korteks. V teh specializiranih conah nastajajo asociativne povezave med različnimi območji in deli možganov in informacije, ki prihajajo iz njih, so integrirane. Asociativni korteks zagotavlja tako kompleksne funkcije, kot so učenje, spomin, govor in razmišljanje.

Subkortikalne strukture.

Pod skorjo ležijo številne pomembne možganske strukture ali jedra, ki so skupine nevronov. Med njimi so talamus, bazalni gangliji in hipotalamus. Talamus je glavno senzorično oddajno jedro; prejme informacije od čutov in jih nato preusmeri v ustrezne dele čutilne skorje. Obstajajo tudi nespecifične cone, ki so povezane s skoraj celotno skorjo in verjetno zagotavljajo procese njene aktivacije in ohranjanja budnosti in pozornosti. Bazalni gangliji so niz jeder (tako imenovana lupina, bleda krogla in nagnjeno jedro), ki sodelujejo pri regulaciji koordiniranih gibov (začetek in ustavitev).

Hipotalamus je majhno območje na dnu možganov, ki leži pod talamusom. Hipotalamus je bogat s krvjo in je pomembno središče, ki nadzoruje homeostatske funkcije telesa. Proizvaja snovi, ki uravnavajo sintezo in sproščanje hipofiznih hormonov (glej tudi HYPOPHYSIS). V hipotalamusu je veliko jeder, ki opravljajo specifične funkcije, kot so uravnavanje metabolizma vode, porazdelitev shranjene maščobe, telesna temperatura, spolno vedenje, spanje in budnost.

Možgansko steblo

na dnu lobanje. Povezuje hrbtenjačo s prednjim možkom in je sestavljena iz podolgovate medule, ponsa, sredine in diencefalona.

Skozi srednji in vmesni možgani, pa tudi skozi celotno deblo, preidejo motorne poti, ki vodijo do hrbtenjače, pa tudi nekatere občutljive poti od hrbtenjače do preležnih delov možganov. Pod njim je most, ki ga živčna vlakna povezujejo z majhnim mozgom. Najnižji del trupa - medulla - neposredno prehaja v hrbtenjačo. V podolgovatih delcih se nahajajo centri, ki uravnavajo delovanje srca in dihanje, odvisno od zunanjih okoliščin, ter nadzorujejo krvni tlak, želodčno in črevesno gibljivost.

Na ravni trupa se križajo poti, ki povezujejo vsako možgansko hemisfero s cerebelumom. Zato vsaka od polobli nadzoruje nasprotno stran telesa in je povezana z nasprotno poloblo majhnega mozga.

Mali možgani

se nahaja pod okcipitalnimi režami možganske poloble. Skozi poti mostu je povezan z nadrejenimi deli možganov. Mali možgani uravnavajo subtilne avtomatske gibe, usklajujejo delovanje različnih mišičnih skupin pri izvajanju stereotipnih vedenjskih dejanj; tudi stalno nadzoruje položaj glave, trupa in okončin, tj. ohranjanje ravnovesja. Po najnovejših podatkih ima možgani zelo pomembno vlogo pri oblikovanju motoričnih sposobnosti, ki pomagajo zapomniti zaporedje gibov.

Drugi sistemi.

Limbični sistem je široko omrežje med seboj povezanih možganskih regij, ki uravnavajo čustvena stanja ter zagotavljajo učenje in spomin. Jedra, ki tvorijo limbični sistem, vključujejo amigdalo in hipokampus (vključen v temporalni lobe), pa tudi hipotalamus in tako imenovano jedro. transparentni septum (v podkožnih predelih možganov).

Retikularna tvorba je mreža nevronov, ki se raztezajo po celotnem trupu do talamusa in so nadalje povezani z obsežnimi področji možganske skorje. Sodeluje pri uravnavanju spanja in budnosti, ohranja aktivno stanje skorje in prispeva k žarišču pozornosti na določene predmete.

ELEKTRIČNA DEJAVNOST MOŽNOSTI

S pomočjo elektrod, nameščenih na površino glave ali vnesenih v snov možganov, je mogoče določiti električno aktivnost možganov zaradi izpustov njenih celic. Zapisovanje električne aktivnosti možganov z elektrodami na površini glave se imenuje elektroencefalogram (EEG). Ne dovoljuje beleženja praznjenja posameznega nevrona. Samo zaradi sinhroniziranega delovanja tisočev ali milijonov nevronov se na zabeleženi krivulji pojavijo opazne oscilacije (valovi).

S stalno registracijo na EEG se odkrivajo ciklične spremembe, ki odražajo splošno raven aktivnosti posameznika. V stanju aktivne budnosti EEG zajame nizke amplitude ne-ritmičnih beta valov. V stanju sproščene budnosti z zaprtimi očmi prevladujejo alfa valovi s frekvenco 7–12 ciklov na sekundo. Pojav spanja se kaže v pojavu počasnih valov z visoko amplitudo (delta valovi). V času sanjanja se na EEG-u ponovno pojavijo beta valovi, na podlagi EEG-ja pa se lahko ustvari napačen vtis, da je oseba budna (od tod tudi izraz »paradoksalen spanec«). Sanje pogosto spremljajo hitri gibi oči (z zaprtimi vekami). Zato sanjanje imenujemo tudi spanje s hitrimi gibi oči (glej tudi SLEEP). EEG vam omogoča diagnosticiranje nekaterih možganskih bolezni, zlasti epilepsije (glej EPILEPSY).

Če registrirate električno aktivnost možganov med delovanjem določenega dražljaja (vizualnega, slušnega ali otipnega), lahko prepoznate tako imenovano. evocirani potenciali - sinhroni izpusti določene skupine nevronov, ki nastanejo kot odziv na specifične zunanje spodbude. Študija evociranih potencialov je omogočila pojasnitev lokalizacije možganskih funkcij, zlasti povezavo funkcije govora z določenimi področji časovnih in čelnih rež. Ta študija prav tako pomaga oceniti stanje senzoričnih sistemov pri bolnikih z zmanjšano občutljivostjo.

MOČNA NEUROHEMIJA

Najpomembnejši nevrotransmitorji v možganih so acetilholin, noradrenalin, serotonin, dopamin, glutamat, gama-aminobutirna kislina (GABA), endorfini in enkefalini. Poleg teh dobro znanih snovi verjetno v možganih delujejo tudi številne druge, ki še niso bile raziskane. Nekateri nevrotransmitorji delujejo samo na nekaterih delih možganov. Tako se endorfini in enkefalini nahajajo le v poteh, ki izvajajo bolečine. Drugi mediatorji, kot je glutamat ali GABA, so bolj razširjeni.

Delovanje nevrotransmiterjev.

Kot smo že omenili, nevrotransmiterji, ki delujejo na postsinaptično membrano, spremenijo prevodnost ionov. Pogosto se to zgodi z aktivacijo v postsinaptičnem nevronu drugega sistema "mediatorja", na primer cikličnega adenozin monofosfata (cAMP). Delovanje nevrotransmiterjev se lahko spremeni pod vplivom drugega razreda nevrokemičnih snovi - peptidnih neuromodulatorjev. Osvobojene s presinaptično membrano istočasno z mediatorjem, lahko povečajo ali drugače spremenijo učinek mediatorjev na postsinaptično membrano.

Nedavno odkrit endorfin-enkefalinski sistem je pomemben. Enkefalini in endorfini so majhni peptidi, ki zavirajo prevajanje bolečinskih impulzov z vezavo na receptorje v osrednjem živčevju, vključno v višjih conah možganske skorje. Ta družina nevrotransmitorjev zavira subjektivno dojemanje bolečine.

Psihoaktivne droge

- snovi, ki se lahko specifično vežejo na določene receptorje v možganih in povzročajo spremembe v vedenju. Opredelili so več mehanizmov njihovega delovanja. Nekateri vplivajo na sintezo nevrotransmiterjev, drugi - na kopičenje in sproščanje iz sinaptičnih veziklov (npr. Amfetamin povzroča hitro sproščanje noradrenalina). Tretji mehanizem je, da se veže na receptorje in posnema delovanje naravnega nevrotransmiterja, na primer učinek LSD (dietilamid lizergične kisline) je mogoče pojasniti z njegovo sposobnostjo, da se veže na serotoninske receptorje. Četrti tip delovanja zdravila je blokada receptorjev, t.j. antagonizem z nevrotransmiterji. Takšni široko uporabljani antipsihotiki kot fenotiazini (npr. Klorpromazin ali aminazin) blokirajo dopaminske receptorje in s tem zmanjšajo učinek dopamina na postsinaptične nevrone. Nazadnje, zadnji skupni mehanizem delovanja je zaviranje inaktivacije nevrotransmiterjev (mnogi pesticidi preprečujejo inaktivacijo acetilholina).

Že dolgo je znano, da morfin (prečiščen proizvod iz opijevega maka) nima le izrazitega analgetskega (analgetičnega) učinka, ampak tudi sposobnost povzročanja evforije. Zato se uporablja kot zdravilo. Delovanje morfina je povezano z njegovo sposobnostjo, da se veže na receptorje na človeškem sistemu endorfina-enkefalina (glejte tudi DROG). To je le eden od mnogih primerov dejstva, da je kemična snov drugačnega biološkega izvora (v tem primeru rastlinskega izvora) sposobna vplivati ​​na delovanje možganov živali in ljudi, v interakciji s specifičnimi nevrotransmitorskimi sistemi. Drug dobro znani primer je kurare, pridobljen iz tropske rastline, ki lahko blokira acetilholinske receptorje. Indijanci Južne Amerike so namazali kurare, s svojim paralizirnim učinkom, povezanim z blokado živčno-mišične transmisije.

ŠTUDIJE MOŽGANOV

Raziskovanje možganov je težko iz dveh glavnih razlogov. Prvič, možganom, ki so varno zaščiteni z lobanjo, ni mogoče neposredno dostopati. Drugič, nevroni možganov se ne regenerirajo, zato lahko vsaka intervencija povzroči nepopravljivo škodo.

Kljub tem težavam so raziskovanje možganov in nekatere oblike njegovega zdravljenja (predvsem nevrokirurške intervencije) znane že od antičnih časov. Arheološke najdbe kažejo, da je človek že v antiki zlomil lobanjo, da je dobil dostop do možganov. Posebej intenzivno raziskovanje možganov je potekalo v vojnih obdobjih, ko je bilo mogoče opaziti različne poškodbe glave.

Poškodbe možganov zaradi poškodbe spredaj ali poškodbe v miru je vrsta eksperimenta, ki uničuje določene dele možganov. Ker je to edina možna oblika "eksperimenta" na človeških možganih, je bila še ena pomembna metoda raziskav poskusi na laboratorijskih živalih. Če opazujemo vedenjske ali fiziološke posledice poškodbe določene možganske strukture, lahko presodimo njeno funkcijo.

Električna aktivnost možganov pri poskusnih živalih je zabeležena z uporabo elektrod, nameščenih na površini glave ali možganov ali vnesenih v snov možganov. Tako je mogoče določiti aktivnost majhnih skupin nevronov ali posameznih nevronov, kot tudi identificirati spremembe ionskih tokov skozi membrano. S pomočjo stereotaktične naprave, ki omogoča vstop v elektrodo na določeni točki v možganih, se preverijo njeni nedostopni globinski deli.

Drugi pristop je odstraniti majhna območja živega možganskega tkiva, po tem pa se njegov obstoj ohranja kot rezina v hranilnem mediju ali pa se celice ločijo in preučijo v celičnih kulturah. V prvem primeru lahko raziščete interakcijo nevronov, v drugem - aktivnost posameznih celic.

Pri proučevanju električne aktivnosti posameznih nevronov ali njihovih skupin na različnih področjih možganov se ponavadi najprej zabeleži začetna aktivnost, nato se določi učinek določenega učinka na funkcijo celic. Po drugi metodi se skozi vsajeno elektrodo nanese električni impulz, da se umetno aktivirajo najbližji nevroni. Tako lahko preučite učinke nekaterih področij možganov na druga področja. Ta metoda električne stimulacije je bila koristna pri preučevanju sistemov aktiviranja matičnih celic, ki potekajo skozi srednji možgani; Uporablja se tudi, ko poskuša razumeti, kako se procesi učenja in spomina odvijajo na sinaptični ravni.

Pred sto leti je postalo jasno, da so funkcije leve in desne hemisfere različne. Francoski kirurg P. Brock, ki je opazoval bolnike z možgansko kapjo, je ugotovil, da so le bolniki s poškodbo leve hemisfere imeli govorno motnjo. Nadaljnje študije o specializaciji polobli so se nadaljevale z drugimi metodami, na primer s snemanjem EEG in evociranimi potenciali.

V zadnjih letih so se za pridobivanje slik (vizualizacij) možganov uporabljale kompleksne tehnologije. Tako je računalniška tomografija (CT) revolucionirala klinično nevrologijo, kar je omogočilo pridobitev podrobne (večplastne) in vivo podobe možganskih struktur. Druga slikovna metoda - pozitronska emisijska tomografija (PET) - daje sliko o presnovni aktivnosti možganov. V tem primeru se v osebo vnaša kratkotrajni radioizotop, ki se nabira v različnih delih možganov, in bolj kot je njihova metabolična aktivnost višja. S pomočjo PET je bilo tudi dokazano, da so govorne funkcije večine pregledanih oseb povezane z levo hemisfero. Ker možgani delujejo z velikim številom vzporednih struktur, PET zagotavlja takšne informacije o možganskih funkcijah, ki jih ni mogoče doseči z eno samo elektrodo.

Praviloma se raziskave možganov izvajajo s kombinacijo metod. Na primer, ameriški nevrobiolog R. Sperri z zaposlenimi je uporabljen kot postopek zdravljenja za zmanjšanje korpusnega žleza (snop aksonov, ki povezujejo obe polobli) pri nekaterih bolnikih z epilepsijo. Kasneje je bila pri teh bolnikih z razcepljenimi možgani raziskana hemisferična specializacija. Ugotovljeno je bilo, da je za govorne in druge logične in analitične funkcije odgovorna prevladujoča prevladujoča (ponavadi leva) polobla, medtem ko nedominantna hemisfera analizira prostorsko-časovne parametre zunanjega okolja. Torej se aktivira, ko poslušamo glasbo. Mozaična slika možganske aktivnosti kaže na to, da so v korteksu in podkožnih strukturah številna specializirana področja; hkratno delovanje teh področij potrjuje koncept možganov kot računalniške naprave z vzporedno obdelavo podatkov.

S prihodom novih raziskovalnih metod se bodo verjetno spremenile ideje o možganskih funkcijah. Uporaba naprav, ki nam omogočajo, da pridobimo "zemljevid" presnovne aktivnosti različnih delov možganov, kot tudi uporabo molekularnih genetskih pristopov, bi morali poglobiti naše poznavanje procesov, ki se pojavljajo v možganih. Glej tudi neuropsihologija.

PRIMERJALNA ANATOMIJA

Pri različnih vrstah vretenčarjev so možgani izjemno podobni. Če primerjamo na ravni nevronov, ugotovimo izrazito podobnost značilnosti, kot so uporabljeni nevrotransmiterji, nihanja koncentracij ionov, tipi celic in fiziološke funkcije. Temeljne razlike so odkrite le v primerjavi z nevretenčarji. Nevronični nevroni so veliko večji; pogosto so med seboj povezani ne s kemikalijami, temveč z električnimi sinapami, ki jih v človeških možganih redko najdemo. V živčnem sistemu nevretenčarjev so odkriti nekateri nevrotransmiterji, ki niso značilni za vretenčarje.

Med vretenčarji se razlike v strukturi možganov nanašajo predvsem na razmerje med posameznimi strukturami. Pri oceni podobnosti in razlik v možganih rib, dvoživk, plazilcev, ptic, sesalcev (vključno z ljudmi) je mogoče izpeljati več splošnih vzorcev. Prvič, vse te živali imajo enako strukturo in funkcije nevronov. Drugič, struktura in funkcije hrbtenjače in možganskega debla so zelo podobne. Tretjič, razvoj sesalcev spremlja izrazito povečanje kortikalnih struktur, ki dosežejo največji razvoj pri primatih. Pri dvoživkah je skorja le majhen del možganov, pri ljudeh pa prevladujoča struktura. Vendar pa se domneva, da so načela delovanja možganov vseh vretenčarjev skoraj enaka. Razlike so odvisne od števila interneuronskih povezav in interakcij, ki so višje, bolj so kompleksni možgani. Glejte tudi PRIMERJAVA ANATOMIJE.

Struktura in razvoj človeških možganov in kako se moški možgani razlikujejo od ženskih?

Morda je eden od najpomembnejših organov človeškega telesa možgani. Zaradi svojih lastnosti lahko uravnava vse funkcije živega organizma. Zdravniki še niso preučevali tega telesa do konca in še danes so predstavili različne hipoteze o njegovih skritih zmožnostih.

Od česa so sestavljeni človeški možgani?

Sestava možganov ima več kot sto milijard celic. Pokrit je s tremi zaščitnimi lupinami. In zahvaljujoč svoji prostornini možgani zavzamejo približno 95% celotne lobanje. Teža je od enega do dveh kilogramov. Vendar je zanimivo, da sposobnost tega telesa ni odvisna od njegove resnosti. Ženski možgani so približno 100 gramov manj kot moški.

Voda in maščoba

60% celotne sestave človeških možganov so maščobne celice in le 40% vsebuje vodo. Šteje se, da je najbolj debel organ v telesu. Za pravilno delovanje možganov je potrebno ustrezno in učinkovito hraniti osebo.

Vprašajte zdravnika o svojem položaju

Struktura možganov

Da bi spoznali in raziskovali vse funkcije človeških možganov, je treba čim bolj temeljito preučiti njeno strukturo.

Celotni možgani so običajno razdeljeni na pet različnih delov:

  • Končni možgani;
  • Vmesni možgani;
  • Zadnji možgani (vključno z možganom in mostom);
  • Midbrain;
  • Podolgovati možgani.

Zdaj pa si poglejmo podrobneje, kaj je vsak oddelek.

Dodatne informacije lahko najdete tudi v podobnem članku o možganih.

Končni, vmesni, srednji in zadnji možgan

Končni možgani so glavni del možganov, ki predstavljajo približno 80% celotne teže in volumna.

Vključuje desno in levo poloblo, ki jo sestavlja več deset različnih utorov in konvolut:

  1. Leva hemisfera je odgovorna za govor. Tu se odvija analiza okolja, upoštevajo se ukrepi, izvajajo nekatere posplošitve in sprejemajo odločitve. Leva hemisfera zaznava matematične operacije, jezike, pisanje, analize
  2. Desna hemisfera pa je odgovorna za vizualni spomin, na primer za zapomnitev obrazov ali nekaterih podob. Za desno je značilno dojemanje barv, glasbenih not, sanj itd.

Vsaka polobla pa vključuje:

Med hemisferami je depresija, ki je napolnjena z corpus callosum. Treba je omeniti, da se procesi, za katere so odgovorne poloble, med seboj razlikujejo.

Za vmesne možgane je značilna več delov:

  • Spodaj. Spodnji del je odgovoren za presnovo in energijo. Tu so celice, ki so odgovorne za signale lakote, žeje, njegovega gašenja in tako naprej. Spodnji del je odgovoren za zagotovitev, da so vse človeške potrebe ugasnjene, v notranjem okolju pa ohranjena stalnost.
  • Central. Vse informacije, ki jih prejmejo naši čuti, se prenesejo v osrednji del diencefalona. Tu je prva ocena njegove pomembnosti. Prisotnost tega oddelka omogoča odkrivanje nepotrebnih informacij in le pomemben del se prenese v možgansko skorjo.
  • Zgornji del.

Vmesni možgani so neposredno vključeni v vse motorne procese. To vključuje vožnjo, hojo in čepenje ter različne položaje telesa v intervalih med premiki.

Srednji možgani so del celih možganov, v katerih so koncentrirani nevroni, odgovorni za sluh in vid. Preberite več o tem, kateri del možganov je odgovoren za vid. Lahko določijo velikost zenice in ukrivljenost leče ter so odgovorni tudi za mišični tonus. Ta del možganov je vključen tudi v vse motorne procese v telesu. Zahvaljujoč njemu lahko oseba izvede ostre premike.

Hindbrain ima tudi kompleksno strukturo in vključuje dva oddelka:

Most je sestavljen iz hrbtne in osrednje vlaknaste površine:

  • Dorzalni možgani. Na videz, most spominja na precej debel valj. Vlakna v njem so razporejena prečno.
  • V osrednjem delu mostu je glavna arterija človeških možganov. Jedra tega dela možganov so množica skupin sive snovi. Zadnji možgani opravljajo prevodniško funkcijo.

Drugo ime malih možganov je majhen možgani:

  • Nahaja se v zadnjem delu lobanje in zavzema celotno votlino.
  • Masa majhnega mozga ne presega 150 gramov.
  • Iz obeh polobli je ločena z zarezo, in če pogledate s strani, se zdi, kot da visijo nad možganom.
  • Bela in siva snov je prisotna v malem mozgu.

Še več, če upoštevamo strukturo, potem je jasno, da siva snov pokriva belo, ki tvori dodatno plast nad njo, ki se običajno imenuje lubje. Sestava sive snovi je molekularna in zrnata plast, pa tudi nevroni, ki imajo obliko hruške.

Bela snov neposredno štrli iz možganov, med katerimi se siva snov širi kot tanke veje drevesa. Samo kožni možgani sami nadzorujejo koordinacijo gibov kostno-mišičnega sistema.

Medulla oblongata je prehodni segment hrbtenjače v možganih. Po podrobni študiji je bilo dokazano, da ima hrbtenjača in možgani veliko skupnih točk v svoji strukturi. Hrbtenjača nadzoruje dihanje in krvni obtok ter vpliva tudi na presnovo.

V korteks je vključenih več kot 15 milijard nevronov, od katerih ima vsak drugačno obliko. Ti nevroni se zbirajo v majhnih skupinah, ki tvorijo več plasti korteksa.

Celotna skorja je sestavljena iz šestih plasti, ki se med seboj gladko preoblikujejo in imajo različne funkcije.

Vzemimo hiter pogled na vsakega od njih, začenši z najglobljim in bližajočim se zunanjim:

  1. Najgloblja plast ima ime vretena. V svoji sestavi oddajajo fusiformne celice, ki se postopoma širijo v belo snov.
  2. Naslednji sloj se imenuje drugi piramidni. Ta plast je poimenovana zaradi nevronov, ki so podobni piramidam različnih velikosti.
  3. Druga zrnata plast. Ima tudi neformalno ime kot notranje.
  4. Piramida. Njegova struktura je podobna drugi piramidalni.
  5. Zrnat. Ker drugi zrnc imenuje notranji, je ta zunanji.
  6. Molekularna. V tem sloju praktično ni celic, v kompoziciji prevladujejo vlaknate strukture, ki se prepletajo kot niti.

Poleg šestih plasti je skorja razdeljena na tri cone, od katerih vsaka opravlja svoje funkcije:

  1. Primarna cona, sestavljena iz specializiranih živčnih celic, prejme impulze iz organov sluha in vida. Če se ta del korteksa poškoduje, lahko povzroči nepopravljive spremembe senzoričnih in motoričnih funkcij.
  2. V sekundarni coni se prejete informacije obdelujejo in analizirajo. Če se škoda ugotovi v tem delu, bo to povzročilo kršitev dojemanja.
  3. Vzbujanje terciarne cone izzovejo receptorji kože in sluha. Ta del omogoča osebi, da spozna svet.

Razlike med spoloma

Zdi se, da je isti organ pri moških in ženskah. Zdi se, da bi lahko bile razlike. Toda zahvaljujoč čudežni tehniki, in sicer tomografskemu skeniranju, je bilo ugotovljeno, da obstaja več razlik med možgani in ženskami.

Poleg tega so ženski možgani glede na težnostne kategorije približno 100 gramov manj kot moški. Po statističnih podatkih strokovnjakov se najpomembnejša spolna razlika pojavi pri trinajstih do sedemnajstih letih. Starejši ljudje postanejo manj različni.

Razvoj možganov

Razvoj človeških možganov se začne v obdobju njegove intrauterine tvorbe:

  • Razvojni proces se začne z nastankom nevralne cevi, za katero je značilno povečanje velikosti v predelu glave. To obdobje se imenuje perinatalno. Za ta čas je značilen fiziološki razvoj, nastajajo pa tudi senzorični in efektorski sistemi.
  • V prvih dveh mesecih intrauterinega razvoja nastanejo trije ovinki: srednji most, most in maternični vrat. Poleg tega sta prva dva karakterizirana s sočasnim razvojem v eno smer, tretja pa se začne v poznejši obliki v popolnoma nasprotni smeri.

Po rojstvu drobtine so njegovi možgani sestavljeni iz dveh polobli in veliko zvitkov.

Otrok raste in možgani so podvrženi številnim spremembam:

  • Brazde in zvijači postanejo veliko večji, poglobijo se in spremenijo svojo obliko.
  • Najbolj razvito območje po rojstvu se šteje za območje v templjih, vendar pa je tudi razvoj na celičnem nivoju, če se primerja med hemisferami in hrbtno stranjo glave, ni dvoma, da je zadnji del glave veliko manjši od polobli. Kljub temu pa so v njej vsi girusi in brazde.
  • Ne prej kot do petih let, razvoj čelnega dela možganov doseže raven, na kateri lahko ta del pokrije otoček možganov. V tem trenutku je treba doseči popoln razvoj govornih in motoričnih funkcij.
  • V starosti od 2 do 5 let dozorevajo sekundarna polja možganov. Zagotavljajo procese zaznavanja in vplivajo na izvajanje zaporedja dejanj.
  • Terciarna polja se oblikujejo v obdobju od 5 do 7 let. Na začetku se konča razvoj parieto-časovno-okcipitalnega dela, nato pa prefrontalni predel. Trenutno se oblikujejo polja, ki so odgovorna za najzahtevnejše nivoje obdelave informacij.

Kako človeški možgani: oddelki, struktura, funkcija

Osrednji živčni sistem je del telesa, ki je odgovoren za naše dojemanje zunanjega sveta in nas samih. Ureja delo celotnega telesa in je dejansko fizični substrat, kar imenujemo »ja«. Glavni organ tega sistema so možgani. Poglejmo, kako so razporejeni možganski odseki.

Funkcije in struktura človeških možganov

Ta organ je sestavljen predvsem iz celic, imenovanih nevroni. Te živčne celice proizvajajo električne impulze, zaradi katerih živčni sistem deluje.

Delo nevronov zagotavljajo celice, imenovane nevroglija - predstavljajo skoraj polovico celotnega števila celic CNS.

Nevroni so sestavljeni iz telesa in procesov dveh vrst: aksonov (prenosni impulz) in dendriti (sprejemni impulz). Tela živčnih celic tvorijo tkivno maso, ki se imenuje siva snov, in njihovi aksoni so vtkani v živčna vlakna in so bela snov.

  1. Trdna. Je tanek film, ena stran ob kostnem tkivu lobanje, druga pa neposredno v skorjo.
  2. Mehka Sestavljen je iz ohlapne tkanine in tesno obdaja površino polobli, gre v vse razpoke in utore. Njegova naloga je prekrvavitev krvi v organ.
  3. Spider Web. Nahaja se med prvo in drugo lupino in opravi izmenjavo cerebrospinalne tekočine (cerebrospinalne tekočine). Tekočina je naravni amortizer, ki ščiti možgane pred poškodbami med gibanjem.

Nato podrobneje pogledamo, kako deluje človeški možgani. Morfo-funkcionalne značilnosti možganov so razdeljene na tri dele. Spodnji del se imenuje diamant. Kjer se začne rombasti del, se hrbtenjača konča - preide v medullo in posterior (pons in cerebelum).

Sledi srednji možgani, ki združujejo spodnje dele z glavnim živčnim centrom - prednjim delom. Slednja vključuje terminalne (možganske poloble) in diencefalon. Glavne funkcije možganskih hemisfer so organizacija višje in nižje živčne dejavnosti.

Končni možgani

Ta del ima največji obseg (80%) v primerjavi z drugimi. Sestavljata ga dve veliki polobli, ki ju povezujeta korpusni kalup, ter vohalno središče.

Za oblikovanje vseh miselnih procesov so odgovorne cerebralne poloble, levo in desno. Tu je največja koncentracija nevronov, opaziti pa so najzahtevnejše povezave med njimi. V globini vzdolžnega žleba, ki ločuje poloblo, je gosta koncentracija bele snovi - corpus callosum. Sestavljen je iz kompleksnih pleksov živčnih vlaken, ki prepletajo različne dele živčnega sistema.

Znotraj bele snovi se pojavijo grozdi nevronov, ki se imenujejo bazalni gangliji. Bližina "transportnega stičišča" možganov omogoča, da te oblike uravnavajo mišični tonus in izvajajo trenutne refleksno-motorične odzive. Poleg tega so bazalni gangliji odgovorni za nastanek in delovanje kompleksnih samodejnih dejanj, ki delno ponavljajo funkcije majhnega mozga.

Možganska skorja

Ta majhna površinska plast sive snovi (do 4,5 mm) je najmlajša tvorba v centralnem živčnem sistemu. To je možganska skorja, ki je odgovorna za delo višjega živčnega delovanja človeka.

Študije so omogočile ugotoviti, katera področja skorje so nastala med evolucijskim razvojem relativno pred kratkim in so bila še vedno prisotna v naših prazgodovinskih prednikih:

  • neokorteks je nov zunanji del skorje, ki je njegov glavni del;
  • archicortex - starejši subjekt, odgovoren za nagonsko vedenje in človeška čustva;
  • Paleokorteks je najstarejše področje, ki se ukvarja z nadzorom vegetativnih funkcij. Poleg tega pomaga ohranjati notranje fiziološko ravnovesje telesa.

Čelni režnji

Največji delci velikih polobel so odgovorni za kompleksne motorične funkcije. Prostovoljni gibi so načrtovani v čelnih delih možganov, tu pa se nahajajo tudi govorni centri. V tem delu korteksa se izvaja voljni nadzor obnašanja. V primeru poškodbe čelnih rež, oseba izgubi moč nad svojimi dejanji, se obnaša antisocialno in preprosto neustrezno.

Potisni režnji

V tesni povezavi z vidno funkcijo so odgovorni za obdelavo in zaznavanje optičnih informacij. To pomeni, da preoblikujejo celoten sklop teh svetlobnih signalov, ki vstopajo v mrežnico, v pomembne vizualne podobe.

Parietalne mešičke

Opravljajo prostorsko analizo in proces večino občutkov (dotik, bolečina, "mišični občutek"). Poleg tega prispeva k analizi in integraciji različnih informacij v strukturirane fragmente - sposobnost zaznavanja lastnega telesa in njegovih strani, sposobnost branja, branja in pisanja.

Začetni režnji

V tem delu poteka analiza in obdelava avdio informacij, ki zagotavlja funkcijo sluha in zaznavanje zvokov. Temporalni režnji so vpleteni v prepoznavanje obrazov različnih ljudi, pa tudi v obrazne izraze in čustva. Tukaj so informacije strukturirane za trajno shranjevanje, zato se izvaja dolgoročni spomin.

Poleg tega časovni režnji vsebujejo govorne centre, poškodbe, ki povzročajo nezmožnost zaznavanja ustnega govora.

Delež otočkov

Šteje se, da je odgovoren za oblikovanje zavesti v človeku. V trenutkih empatije, empatije, poslušanja glasbe in zvokov smeha in joka se aktivno lože otočkov. Obravnava tudi občutke odpornosti proti umazaniji in neprijetnim vonjem, vključno z namišljenimi dražljaji.

Vmesni možgani

Vmesni možgani služi kot nekakšen filter za nevronske signale - vzame vse vhodne informacije in odloči, kam naj gre. Sestavljajo ga spodnji in zadnji del (thalamus in epithalamus). Endokrina funkcija je tudi realizirana v tem delu, t.j. hormonsko presnovo.

Spodnji del je sestavljen iz hipotalamusa. Ta majhna gosta nevronov ima velik vpliv na celotno telo. Poleg uravnavanja telesne temperature hipotalamus nadzira cikle spanja in budnosti. Prav tako sprosti hormone, ki so odgovorni za lakoto in žejo. Ker je hipotalamus središče užitka, uravnava spolno vedenje.

Prav tako je neposredno povezana z hipofizo in prenaša živčevje v endokrino aktivnost. Funkcije hipofize so po drugi strani regulacija dela vseh žlez telesa. Električni signali gredo iz hipotalamusa v hipofizo v možganih, "naročajo" proizvodnjo katerih hormonov je treba začeti in katere je treba ustaviti.

Diencefalon vključuje tudi:

  • Talamus - ta del opravlja funkcije "filtra". Pri tem se signali iz vizualnih, slušnih, okusnih in otipnih receptorjev obdelujejo in razdelijo ustreznim oddelkom.
  • Epithalamus - proizvaja hormon melatonin, ki uravnava cikle budnosti, sodeluje v procesu pubertete in nadzira čustva.

Midbrain

Predvsem uravnava slušno in vizualno refleksno aktivnost (zoženje zenice pri močni svetlobi, obračanje glave na vir glasnega zvoka itd.). Po obdelavi v talamusu informacije preidejo v srednji možgani.

Tu se nadalje obdeluje in začne proces zaznavanja, oblikovanje smiselnega zvoka in optične podobe. V tem delu je sinhronizirano gibanje oči in zagotovljen binokularni vid.

Srednji možgani vključujejo noge in kvadrokromijo (dve slušni in dve vizualni nasipi). V notranjosti je votlina srednjega možganja, ki združuje prekate.

Medulla oblongata

To je starodavna tvorba živčnega sistema. Funkcije medulle oblongata zagotavljajo dihanje in srčni utrip. Če poškodujete to območje, potem oseba umre - kisik preneha teči v kri, ki ga srce ne črpa več. V nevronih tega oddelka se začnejo zaščitni refleksi, kot so kihanje, utripanje, kašljanje in bruhanje.

Struktura podolgovate medule je podobna podolgovati žarki. V njem je jedro sive snovi: retikularna tvorba, jedro več lobanjskih živcev in nevronska vozlišča. Piramida medulla oblongata, sestavljena iz piramidnih živčnih celic, opravlja prevodno funkcijo, ki združuje možgansko skorjo in hrbtno regijo.

Najpomembnejši centri medulle oblongata so:

  • regulacijo dihanja
  • regulacijo krvnega obtoka
  • regulacijo številnih funkcij prebavnega sistema

Zadnji možgani: most in mali možgani

Struktura zadnjih možganov vključuje pons in cerebelum. Funkcija mostu je zelo podobna njenemu imenu, saj je sestavljena predvsem iz živčnih vlaken. Most možganov je v bistvu »avtocesta«, preko katere signali od telesa do možganov prehajajo in impulzi potujejo od živčnega centra do telesa. Na naraščajočih načinih prehaja most možganov v srednji možgan.

Mali možgani imajo veliko več možnosti. Funkcije majhnega mozga so koordinacija gibov telesa in vzdrževanje ravnovesja. Poleg tega mali možgani ne urejajo le kompleksnih gibov, temveč prispevajo tudi k prilagoditvi mišično-skeletnega sistema pri različnih motnjah.

Na primer, poskusi z uporabo invertoskopa (posebna očala, ki spreminjajo podobo sveta, ki ga obkroža) so pokazali, da so funkcije majhnega mozga odgovorne ne le za to, da se oseba začne orientirati v prostoru, temveč tudi vidi svet pravilno.

Anatomsko, mali možgani ponavljajo strukturo velikih polobel. Zunaj je prekrita s plastjo sive snovi, pod katero je kopica bele barve.

Limbični sistem

Limbični sistem (od latinske besede limbus - rob) se imenuje množica formacij, ki obkrožajo zgornji del trupa. Sistem vključuje vohalne centre, hipotalamus, hipokampus in retikularno formacijo.

Glavne funkcije limbičnega sistema so prilagoditev organizma spremembam in uravnavanje čustev. Ta tvorba prispeva k ustvarjanju trajnih spominov prek povezav med spominom in čutnimi izkušnjami. Tesna povezava med vohalnim traktom in čustvenimi središči vodi k dejstvu, da nam vonji povzročajo tako močne in jasne spomine.

Če navedete glavne funkcije limbičnega sistema, je odgovoren za naslednje postopke:

  1. Občutek vonja
  2. Komunikacija
  3. Spomin: kratkoročno in dolgoročno
  4. Utrujen spanec
  5. Učinkovitost oddelkov in organov
  6. Čustva in motivacijska komponenta
  7. Intelektualna dejavnost
  8. Endokrini in vegetativni
  9. Delno vključen v nastanek hrane in spolni nagon

Ti Je Všeč O Epilepsiji